Impaired complex-I mitochondrial biogenesis in Parkinson disease frontal cortex.

نویسندگان

  • Ravindar R Thomas
  • Paula M Keeney
  • James P Bennett
چکیده

Parkinson's disease (PD) can include a progressive frontal lobe α-synucleinopathy with disability from cognitive decline and cortico-limbic dysregulation that may arise from bioenergetic impairments. We examined in PD frontal cortex regulation of mitochondrial biogenesis (mitobiogenesis) and its effects on Complex-I. We quantified expression of 33 nuclear genome (nDNA)-encoded and 7 mitochondrial genome (mtDNA)-encoded Complex-I genes, 6 Complex-I assembly factors and multiple mitobiogenesis genes. We related these findings to levels of Complex-I proteins and NADH-driven electron flow in mitochondria from these same specimens reported in earlier studies. We found widespread, decreased expression of nDNA Complex-I genes that correlated in some cases with mitochondrial Complex-I protein levels, and of ACAD9, a Complex-I assembly factor. mtDNA-transcribed Complex-I genes showed ~ constant expression within each PD sample but variable expression across PD samples that correlated with NRF1. Relationships among PGC-1α and its downstream targets NRF1 and TFAM were very similar in PD and CTL and were related to mitochondrial NADH-driven electron flow. MicroRNA arrays revealed multiple miRNA's regulated >2-fold predicted to interact with PGC-1α or its upstream regulators. Exposure of cultured human neurons to NO, rotenone and TNF-alpha partially reproduced mitobiogenesis down-regulation. In PD frontal cortex mitobiogenesis signaling relationships are maintained but down-regulated, correlate with impaired mitochondrial NADH-driven electron flow and may arise from combinations of nitrosative/oxidative stresses, inflammatory cytokines, altered levels of mitobiogenesis gene-interacting microRNA's, or other unknown mechanisms. Stimulation of mitobiogenesis in PD may inhibit rostral disease progression and appearance of secondary symptoms referable to frontal cortex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brain Mitochondrial Dysfunction and Complex I Syndrome in Parkinson ́s Disease

1.1 Clinical characteristics of Parkinson’s disease Parkinson’s disease (PD) is an old-age neurodegenerative disease with a small but significant genetic risk. The prevalence of PD is of 0.3% in the whole population, affecting more than 1% of the humans over 60 years of age (de Lau & Breteler, 2006). Parkinson ́s disease is characterized by the progressive loss of dopamine due to degeneration of...

متن کامل

The dying of the light: mitochondrial failure in Alzheimer's disease.

Impaired brain energy production, reflected by reduced cortical glucose metabolism seen on 2-FDG PET scans, has emerged as a robust biomarker of mild cognitive impairment (MCI). Progression from MCI to Alzheimer's disease (AD) shows further decline of cortical 2-FDG uptake, implying worsening bioenergetics. We characterized respiration, respiratory protein levels, and gene expressions for mitoc...

متن کامل

Brain Mitochondrial Dysfunction in Aging, Neurodegeneration, and Parkinson's Disease

Brain senescence and neurodegeneration occur with a mitochondrial dysfunction characterized by impaired electron transfer and by oxidative damage. Brain mitochondria of old animals show decreased rates of electron transfer in complexes I and IV, decreased membrane potential, increased content of the oxidation products of phospholipids and proteins and increased size and fragility. This impairme...

متن کامل

P 48: Pioglitazone in Early Parkinson: A Review Study

More than 10 million people worldwide are living with Parkinson’s disease (PD). The ages of people who have Parkinson are variable, usually between 50 and 80 years, the average of them is 55 years old. The symptoms of PD are progressive, and within 10 to 20. It happens when dopaminergic neurons were being degenerate. Peripheral and central inflammatory and oxidative stress pathways play a...

متن کامل

Complex I deficiency in Parkinson's disease frontal cortex.

A study of complex I (NADH:ubiquinone oxidoreductase) activity in Parkinson's disease (PD) brain has identified loss of activity only in substantia nigra although loss of activity of this enzyme has been identified in a number of non-brain tissues. We investigated this paradox by studying complex I and other complexes of the mitochondrial electron transport chain in frontal cortex from PD and a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Parkinson's disease

دوره 2 1  شماره 

صفحات  -

تاریخ انتشار 2012